

Safety Cases for Advanced Control Software:

Safety Case Patterns

Robert Alexander, Tim Kelly, Zeshan Kurd, John McDermid

Department of Computer Science
University of York

15th October 2007

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

04-01-2008
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

20 June 2007 - 15-Sep-08

5a. CONTRACT NUMBER
FA8655-07-1-3025

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Safety Cases for Advanced Control Software

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Professor John A McDermid

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of York
Heslington
York YO10 5DD
United Kingdom

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515 BOX 14
APO AE 09421

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

Grant 07-3025

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking University of York as follows: The project will undertake one activity: Produce a unified (generic)
approach to developing safety cases for adaptive avionics and software and identifying a 'way ahead' to develop and validate the approach,
based on the outline produced in the preceding NASA project.

15. SUBJECT TERMS
EOARD

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
JAMES LAWTON Ph. D.
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

29 19b. TELEPHONE NUMBER (Include area code)

+44 (0)1895 616187

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

 2

1. Introduction

As with the previous report [1], our focus in addressing safety cases for ‘advanced’ control
systems is to concentrate on the class of adaptive systems. A system can be considered
adaptive if its behaviour cannot be predicted solely from knowledge of its initial software
design and state. The behaviour of an adaptive system is the product of its initial state and
the adaptations (state changes) that have taken place according to the stimuli it has
encountered.

Adaptive systems can be introduced to improve safety (e.g. to continue to control an aircraft
safely in the event of losing a control surface) or to improve other system characteristics (e.g.
to improve the fuel consumption of an aero-engine). The motivation for introducing an
adaptive capability has a significant impact on the nature of the required safety argument.
Where improved safety is the goal of the adaptation, the safety argument must justify that
the adaptive system is capable of reducing some of the risks associated with hazards already
present with the equipment under control. At the same, it is necessary to ensure that the
introduction of the adaptive capability does not introduce new, or increase existing, risks.
Where adaptation is being introduced for reasons other than safety, safety can be viewed as
a constraint. The principal concern is that the adaptive capability doesn’t introduce new, or
increase existing, risks.

The novelty and perceived unpredictability of adaptive systems can make safety engineers
and regulators look sceptically upon their potential use in safety-critical applications.
(Indeed, the international safety standard IEC 61508 [2] advises against the use of artificial
intelligence techniques for the highest integrity applications.) This increases the need to
establish compelling safety cases that assure their safe use in safety-critical applications. A
number of arguments will be required as part of the safety case for adaptive systems. For
example, it may be necessary to argue that levels of safety experienced with conventional
(non-adaptive) systems are maintained, that an acceptable balance has been made between
risk-reduction and cost, and that an adaptation mechanism is inherently safe. This report
presents the patterns of argument that can be used in structuring a safety case for an
adaptive system.

The structure of this report is as follows. Section 2 provides an overview of existing
(software) safety standards and discusses the extent to which compliance with these
standards will result in a compelling case for safety for adaptive systems. Section 3 presents
a collection of fourteen argument patterns – expressed using the Goal Structuring Notation
(GSN) – that, in composition, can be used to establish the principal arguments of safety
required for an adaptive system. Section 4 provides a summary of the approach outlined.

2. The Role of Existing (Software) Safety Standards

A large number of software safety standards exist to define required software safety
assurance practice. These standards vary in their requirements. Whilst some of this variance
is in the detail (e.g. favoured verification methods), some large differences in philosophy
remain. One such philosophical difference is between so-called process assurance-based
safety standards – such as DO-178B [3] – and product evidence-based safety standards –
such as UK Defence Standard 00-56 Issue 4 [4]. In this section we will discuss whether
compliance with these standards will establish a compelling safety case for an adaptive
system.

 3

2.1 Process Assurance-Based Certification

A number of software assurance standards – such as DO-178B [3] and IEC 61508 [2] – are
described as being “process-based”, in that they define a set of practices to be adhered to in
the development, verification and validation of software. In such standards the software
processes are typically prescribed according to the criticality of software failure. In the civil
aerospace domain Development Assurance Levels (DALs) (e.g. see [3]) are used to define the
level of rigour required. In the European rail, process industry, and automotive domains
Safety Integrity Levels (SILs) (e.g. see [2]) are used. SILs and DALs are similar concepts, but
differ in the details of their allocation, requirements and application.

Both SILs and DALs define the level of risk reduction expected from a software system. The
greater the criticality of a software-involved system, the greater the risk reduction is
necessarily attributed to that system. SILs and DALs can also be thought of as specifying the
required degree of freedom of the system from flaw. For software systems, this particularly
relates to the degree of freedom from systematic errors in the design – introduced through
failings in the software production process. Processes and techniques are specified for each
SIL / DAL. The higher the SIL / DAL, the more demanding are the requirements on the
software production process.

The following quote from the introduction to DO-178B summarises the philosophy behind
the organisation of the standard:

“These guidelines are in the form of:
- Objectives for software life cycle processes.
- Descriptions of activities and design considerations for achieving those
objectives.
- Descriptions of the evidence that indicates that the objectives have been
satisfied.”

DO-178B defines an outline software life-cycle (as shown in Figure 1). The main stages of this
life-cycle are:

• Software Requirements (both High-Level and Low-Level)
• Software Design
• Software Coding
• Integration

Many of the requirements of DO-178B are expressed over this model of the process. For
example, there are requirements (called ‘objectives’ in DO-178B) concerned with the
consistency of the artefacts produced at each stage, and of the compliance between the
artefacts of one stage (e.g. source code) and the artefacts of another (e.g. low-level
requirements). DO-178B places a strong emphasis on traceability, and the human review of
artefacts (such as requirements). DO-178B also strongly favours testing as the primary
means of verification.

 4

System
Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

(A-2: 3, 4, 5)

(A-2: 7)

A-3.1 Compliance
A-3.6 Traceability

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy & Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

(A-2: 6)

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy & Consistency

(A-2: 1, 2)

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance

A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With TargetA-5. 7 Complete & Correct

Low-Level
Requirements

Compliance: with requirements
Conformance: with standards

A-7.3-4 Functional Coverage (test)
A-7.5-7 Structure Coverage (test)

Figure 1 – DO-178B Life-cycle and Objectives

The objectives of DO-178B vary according to DAL. At level D, the lowest level, 28 objectives
are defined (covering aspects such as configuration management, tool qualification, and
high-level requirements coverage). At level C, a further 29 objectives are added (covering
aspects such as statement coverage, and testing of low-level requirements). At level B, a
further 8 objectives are added (covering aspects such as decision coverage). Finally, at level
A the requirement for MC/DC coverage is added, together with greater source code to
object code traceability. In total, 66 objectives are defined for a Level A compliant software
development.

2.1.1 Applying Process-Assurance Approaches to Adaptive Systems
Justification

It is possible to applying a process-assurance approach to the development of an adaptive
system. However, it is important to recognise a key difference that exists between the
development of conventional software system and the development of an adaptive software
system. In the development of conventional systems, requirements are refined,
decomposed and allocated to the point where a deterministic solution is produced. In the
development of adaptive systems, the ultimate refinement of operational behaviour is
performed at run-time. Development of an adaptive system is concerned with the creation
of a system that can, in operation, alter its behaviour response to adaptation stimuli.
Therefore, assurance of the development process of an adaptive system may ultimately fail
to provide a compelling basis for an argument of acceptably safe behaviour. Where
adaptation following the initial implementation of an adaptive system can have an impact on
safety this must be included with the scope of the safety argument.

 5

It is hard to establish a safety case for an adaptive system purely from the satisfaction of
positively expressed requirements. Such requirements describe the desired behaviour of the
adaptation mechanism. Safety requirements often have a negative focus [5]. They define
properties that the software should not exhibit in operation. This can create difficulties in
assessing the completeness of any testing performed purely from a perspective of
implementation ‘compliance’.

The lifecycle of software assurance standards such as DO-178B can also pose a problem for
the development of adaptive systems. The lifecycle shown in Figure 1 assumes the
‘conventional’ progression of requirements to design to implementation. The development
of adaptive systems does not always fit neatly within such a process. For example, adaptive
systems are often employed in situations where an exact specification of required behaviour
cannot be provided. System development may start from an intentionally incomplete
specification that will need to be refined through an initial period of training. The
development of safety requirements will have to be determined incrementally as the
behaviour of the adaptive system emerges through adaptation. In this regard, the lifecycle
of adaptive system development may be much closer to evolutionary software development
lifecycles such as Boehm’s spiral model [6].

A limitation of DO-178B is that it currently strongly emphasises testing as the primary means
of software verification. The results of exhaustive testing provide strong evidence for claims
about software behaviour. However, it is unlikely to be possible to provide adequate test
coverage of an adaptive system. The behaviour of the system depends not only on its static
structure and immediate stimuli but on the behaviour that it has learned, which in turn
depends on the adaptation stimuli (e.g. training data) that it has learnt from. In the case of
online learning, the behaviour of the system depends on the current stimuli and (potentially)
all previous stimuli. Testing is likely to be impractical, particularly if the input space is large
[7].

There are, in any case, problems with the use of testing for strong safety claims about
conventional software. For example, Littlewood and Strigini note in [8] that, at best,
statistical testing can show a failure rate of around 10-4 per operating hour. This figure is
inadequate for many safety-critical software applications.

In the revision of DO-178B (to produce DO-178C) proposals have been made to generalise
the wording to call for ‘verification’ instead of specific methods (such as ‘testing’ or ‘review’).
This approach “opens the door” for alternative forms of evidence to be selected without
needing to be justified as a deviation from the defined verification approach. The use of
alternative (analytic) forms of evidence is discussed further in section 2.2.1.

2.2 Product-Based Certification

Product-based certification focuses on the construction of well-structured and reasoned
safety arguments. Arguments are required to demonstrate the satisfaction of product-
specific safety objectives derived from hazard analysis; justify the acceptability of safety,
based upon product-specific and targeted evidence; and (potentially) justify the
determination of the safety objectives and selection of evidence. The arguments and
evidence required to justify acceptable safety form the safety case, and are often
summarised in a safety case report [9]. This is the approach required by the UK Defence
Standard 00-56 Issue 4 [4].

 6

For software, product-based certification demands that software level safety claims are
hazard-based – i.e. they concern failures of the software that are believed to lead to system
level hazards. Ideally, these claims should be derived from a system-level safety case. In a
system-level safety case a claim relating to a specific behaviour of the software may be seen
as a contributing, but undeveloped argument. From the perspective of software safety, such
claims are the starting point for the construction of the software safety case. This is the
intended relationship between system and software level safety cases under UK Defence
Standard 00-56 Issue 4 [4]. This means that the focus in the software level safety arguments
is on “demonstrating the safety of …”, rather than “demonstrating the development of …”
the software system. Arguments and evidence about the development process followed are
not of interest unless they can somehow be specifically related to the product-specific
software safety claims.

The principle that the risks should be reduced As Low As Reasonably Practicable (ALARP) is
core to the UK Defence Standard 00-56. The ALARP principle (discussed in more detail later
in section 3.7) allows the benefit associated with the risks being posed, and the
proportionality of the costs involved in risk reduction, to be included in the arguments of risk
acceptance. As discussed later, the ALARP principle is potentially valuable when attempting
to argue the acceptability of risks associated with adaptive systems – particularly in
situations where an adaptive capability is brought in for reasons other than safety. The
ALARP principle is now also included in US MilStd 882 (at draft E) [10] as a means of
justifying risk acceptance.

Safety Integrity Levels (SILs) no longer form part of the requirements of UK Defence
Standard 00-56. Instead, 00-56 requires that the level of evidence presented in the safety
case ought to be chosen according to the level of risk associated with the system:

“The quantity and quality of the evidence shall be commensurate with the
potential risk posed by the system and the complexity of the system.”

This requirement is coupled with the following guidance on the relative strength of different
forms of argument and evidence:

“In general, arguments based on explicit, objective evidence are more
compelling than those that appeal to judgement or custom and practice. It is
therefore recommended that any argument should be developed in accordance
with the following precedence:

• Deductive, where the conclusion is implicit in the evidence used to
support the argument.

• Inductive, where the argument is firmly based on the evidence
presented, but extrapolates beyond the available evidence.

• Judgmental, where expert testimony, or appeal to custom and practice
is necessary to support the conclusion.”

By comparison, US MilStd 882E has, in guidance, the concept of Software Control Categories
as a means of expressing the criticality of the software component of a safety-critical system.
As with 00-56, the criticality can be used to moderate the strength of argument and
evidence required to assure the safe behaviour of the software.

 7

There is no direct equivalent to the 00-56 requirement for the production of Safety Cases
and Safety Case Reports in MilStd 882E. 882E does talk about the production of a “technical
data package”. However, this seems to be a collation of the project safety evidence, e.g. test
results and safety analyses, rather than an explicit presentation of safety arguments and
evidence as required by a Safety Case Report in the UK.

In practice, differences in UK and US practice in the area of safety cases do cause project
difficulties. In particular, the UK expectation of the content, scope and depth of a safety
case report is unfamiliar to many US system suppliers. However, there are an increasing
number of instances of where US suppliers are beginning to produce safety cases (for
systems exported to the UK and for joint US-UK initiatives).

The US, with UK Ministry of Defence sponsorship, is looking to adapt MilStd 882 to remove
the differences/risks currently perceived as existing between these standards. The aim being
worked towards is to have an "industry version" of MilStd 882 which could meet both the
"formal" requirements of MilStd 882 and UK Defence Standard 00-56 Issue 4.

2.2.1 Applying Product-Based Assurance Approaches to Adaptive Systems
Justification

A product evidence-based approach to the assurance of the safety of adaptive systems
demands the production of safety arguments that are hazard and risk focused. A safety case
is required that identifies and addresses failures of the adaptive system that can be shown
to contribute to system level hazards. A product evidence-based approach is not primarily
concerned with how an adaptive system has been developed. Instead, it is concerned with
operational behaviour of the system. Whilst this is ultimately a more direct and compelling
approach to the justification of safety, it means that the arguments of safety will be forced
to engage in the details of the mechanisms and stimuli that lead to (potentially unsafe)
changes in the behaviour of an adaptive system.

Both the concept of software ‘criticality’ in 882E and the notion of moderating arguments
and evidence according to the risk associated with system operation (from 00-56) have
bearing on the safety cases required for adaptive systems. Where adaptive systems are
placed in low-criticality (e.g. advisory) roles, the strength of argument required is low. It may
even be possible to rely upon inductive statistical evidence concerning the performance of
the adaptive system (e.g. as suggested by approaches such as [11]). However, if adaptive
systems are to be placed in high-criticality applications (e.g. with direct autonomous control
over safety-critical functions) then strong, deductive and analytical arguments and evidence
will be required.

There have been previous examples where testing has been shown to provide inadequate
evidence of the safety of a software system, and where analysis has been shown to be
preferable. An example of this can be seen in scheduling for safety-critical control systems,
with the move from cyclic executive schedulers to fixed-priority task structure schedulers.
Fixed priority schedulers have many desirable properties when compared to cyclic
executives, but their behaviour is not deterministic and therefore they are much less
amenable to testing. Analysis is therefore needed in order to provide adequate guarantees
of their real-time performance [12].

 8

3. Safety Case Patterns for Adaptive Systems

The previous report [1] outlined out possible approaches to arguing the safety of adaptive
systems. The earlier analysis in the project indicated that a product-focused argument
would be needed. The report set out some outline arguments necessary to provide this
product-focused argument. However, no “joined up” argument was produced. This section
of the report expands upon these original arguments and documents them as fourteen
argument patterns described using the Goal Structuring Notation (GSN). The aim in
presenting this collection of patterns is to indicate how the overall argument of acceptable
safety can be decomposed to the point where the necessary claims regarding the technical
characteristics of an adaptive system are clearly identified.

Before presenting the patterns in sections 3.2 to 3.11, the following section presents a brief
overview of the use of GSN to present safety arguments, and safety argument patterns.

3.1 Using GSN to Present Safety Arguments

The Goal Structuring Notation (GSN) [13] – a graphical argumentation notation – explicitly
represents the individual elements of any safety argument (requirements, claims, evidence
and context) and (perhaps more significantly) the relationships that exist between these
elements (i.e. how individual requirements are supported by specific claims, how claims are
supported by evidence and the assumed context that is defined for the argument). The
principal symbols of the notation are shown in Figure 4 (with example instances of each
concept).

System can

tolerate single
component

failures

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1

Goal Solution Strategy

All Identified
System
Hazards

Context
Undeveloped Goal

(to be developed further)

Figure 2 – Principal Elements of the Goal Structuring Notation

When the elements of the GSN are linked together in a network they are described as a ‘goal
structure’. The principal purpose of any goal structure is to show how goals (claims about
the system) are successively broken down into sub-goals until a point is reached where
claims can be supported by direct reference to available evidence (solutions). As part of this
decomposition, using the GSN it is also possible to make clear the argument strategies
adopted (e.g. adopting a quantitative or qualitative approach), the rationale for the
approach and the context in which goals are stated (e.g. the system scope or the assumed
operational role).

 9

Figure 3 shows an example goal structure for a conventional control system. In this
structure, as in most, there exist ‘top level’ goals – statements that the goal structure is
designed to support. In this case, “C/S (Control System) Logic is fault free”, is the (singular)
top level goal. Beneath the top level goal or goals, the structure is broken down into sub-
goals, either directly or, as in this case, indirectly through a strategy. The two argument
strategies put forward as a means of addressing the top level goal in Figure 5 are “Argument
by satisfaction of all C/S (Control System) safety requirements”, and, ”Argument by omission
of all identified software hazards”. These strategies are then substantiated by five sub-goals.
At some stage in a goal structure, a goal statement is put forward that need not be broken
down and can be clearly supported by reference to some evidence. In this case, the goal
“Unintended Closing of press after PoNR (Point of No Return) can only occur as a result of
component failure”, is supported by direct reference to the solutions, “Fault tree cutsets …”
and “Hazard Directed Testing Results”.

 G1

C/S Logic is fault free

S1

Argument by
satisfaction of all C/S
safety requirements

S2

Argument by omission
of all identified software
hazards

C1

Identified
software hazards

G2

Press controls being
'jammed on' will cause
press to halt

G3

Release of controls prior to press
passing physical PoNR will
cause press operation to abort

G4

C/S fails safe (halts) on, and
annunciates (by sounding
klaxon), all single component
failures

Sn1

Black Box
Test Results

G5

'Failure1' transition of PLC
state machine includes
BUTTON_IN remaining true

G7

'Abort' transition of PLC
state machine includes
BUTTON_IN going FALSE

Sn2

C/S State
Machine

G8

Unintended opening of press
(after PoNR) can only occur
as a result of component
failure

G9

Unintended closing of press
can only occur as a result of
component failure

Sn3

Fault tree analysis
cutsets for event
'Hand trapped in

press due to
command error'

Sn4

Hazard
directed test

results

Figure 3 – An Example Goal Structure (for a conventional system)

A number of extensions have been made to GSN to support express of generalised /
abstracted safety argument patterns. Figure 4 shows a simple goal structure pattern that
uses these extensions. In this structure, the top-level goal of system safety (G1) is re-
expressed as a number of goals of functional safety (G2) as part of the strategy identified by
S1. In order to support this strategy, it is necessary to have identified all system functions
affecting overall safety (C1) e.g. through a Functional Hazard Analysis. In addition, it is also
necessary to put forward (and develop) the claim that either all the identified functions are
independent, and therefore have no interactions that could give rise to hazards (G4) or that
any interactions that have been identified are non-hazardous (G3).

 10

G1: {System X}
is Safe

G2: {Function Y}
is safe

S1: Argument over
 all safety-related

functions of system

C1: Safety Related
Functions of {System X}

(n = # functions)

n

G3: Interactions
between system

functions are
non-hazardous

G4: All system
functions are
independent

(no interactions)

Provides {Function Y}

Indicates that
element

remains to be
developed

(supported)

Indicates that
element

remains to
be

instantiated
Indicates a 1-
to-many
relationship

Indicates that
element remains
to be instantiated
and then
developed

1 of 2
Indicates a choice

Figure 4 – GSN Extensions for Pattern Description

The following sections (3.2 to 3.11) use GSN, and the extensions for presenting generalised /
abstracted arguments, to present fourteen safety case argument patterns that can be used
to establish the principal arguments of safety required for an adaptive system.

3.2 Improved or Maintained Safety

The first argument pattern deals with the distinction (as discussed in Section 1 of this report)
as to whether we have introduced an adaptive capability to improve safety or to improve
some other system attribute (e.g. performance). This distinction can govern whether safety
is viewed as an objective or a constraint, and impacts upon the top-level claims of any safety
argument. Figure 5 outlines the structure of the top-level argument.

Regardless of the motivation for introducing adaptation, the goal Top must be supported.
As with any such top-level claim, context such as the adaptive system definition (SysDefn)
and the operating region over which the system is considered to be safe (SafeOpReg) must
be provided. SafeOpReg defines the entire space of normal and abnormal operating
conditions under which the adaptive system will continue to operate safety.

Underneath Top we see the choice in supporting claims that is associated with the
motivation for introducing safety. If we have introduced adaptation to improve safety
ImpSaf represents the claim that should be made. If adaptation has been introduced for
reasons other than safety AdaptNotUnacc should be stated. AdaptNotUnacc states that
safety is maintained even in the presence of introducing an adaptation capability. There are
two possible means of supporting this claim. One approach is to argue by comparison. To
do this, a definition of the ‘conventional’ (non-adaptive) system being used as the basis
comparison needs to be referenced by ConvSys. (As shown in the pattern, this is also
required for the argument of improvement of safety ImpSaf.) An alternative to comparison
is to argue by reference to addressing defined risk acceptance criteria that exist
(AdaptRiskAcc).

 11

Figure 5 – Improved or Maintained Safety Argument

3.3 Improved Safety

Continuing from the previous pattern, Figure 6 shows the argument pattern for supporting
the claim that the adaptive capability of the system has improved safety (ImpSaf).

Figure 6 – Improved Safety Argument

The argument of improved safety implies that the operating region of the system has been
extended – i.e. that there were operating conditions that would have previously led to an
unsafe state, and that are now addressed by the introduced adaptive capability. It is
important to define clearly how the operating region of the system has been extended,
when compared to the operating region of the conventional (non-adaptive) system. This is
achieved through instantiating ExtOpReg and ConvOpReg.

As shown, there are three elements to the argument of improved safety. Firstly, that the
adaptive system is helping to reduce risk in the extended operating region (IncSafExt).
Secondly, that no new or increased risks are present in the extended operating region

 12

(NoNewExt). Finally, the increased safety in the extended operating region cannot be at the
expense of reduced safety in the operating region previously addressed by the conventional
(non-adaptive) system. This argument is captured in claim ALASConv.

3.4 Maintained Safety

The argument of maintained safety is a subset of the argument of improved safety discussed
in the previous section. This is the essential argument required when adaptation has been
introduced for reasons other than safety (e.g. to improve performance or availability or to
reduce costs). Figure 7 outlines the required components of this argument.

Figure 7 – Maintained Safety Argument

The adaptation capability of the system has extended the operating region of the system
(ExtOpReg). The first concern is that there are no increased risks in this extended operating
region (NoNewExt). Secondly, we are concerned that the adaptive system is at least as safe
as the ‘conventional’ system (ALASConv) over the previously covered operating region
(ConvOpReg). In the next section we use an existing argument pattern to illustrate the
required elements of an argument capable of supporting ALASConv.

3.5 At Least As Safe

Figure 8 shows an existing pattern that illustrates the challenges that must be addressed
when attempting to argue that one system is at least as safe as another. The top two layers
of this pattern overlap with the arguments already presented in the previous sections
(specifically NotIncRiskCov, AdaptNotUnacc, and Top). (Note – the diamond symbol
represents a contextual reference to system model information.) The argument required to
support ALASConv is shown in the strategy AtLeastAsSafeArg and its supporting elements.

In the absence of acceptability targets / criteria for the ‘new’ adaptive system, an obvious
minimal requirement is that overall safety is not worsened by the introduction of the new
system. (In general, it is usually desired that the overall level of safety is either the same or
improving over time – deterioration is not usually accepted).

NotIncRiskConv

Adaptive capability of system does
not result in an increased level of
risk compared to {conventional (non-
adaptive) system}

inter pattern link

NoNewExt
No new / increased risks
introduced in the { extended
operating region of the adaptive
system }

ALASConv

{Adaptive System } is at least as
safe in the {operating region
covered by the conventional
(non-adaptive) system}

inter pattern link inter pattern link

ConvOpReg
{ Operating region
covered by the
conventional (non -
adaptive) system }

inter pattern link

ExtOpReg
Extended operating
region of the
adaptive system

inter pattern link

 13

Importantly, to carry out this argument strategy it is essential that the safety record of the
system being replaced is known, otherwise comparison will be impossible. This context
reference ExistSysSafetyRecord must be instantiated to point to the where the safety record
of the existing system can be found. The credibility of this argument approach hangs upon
the integrity and completeness of this evidence.

A reference is made by the pattern to a description of the ‘conventional’ system being
replaced ExistSysDesc. The ‘at least as safe’ approach creates a weak argument if it is not
possible to justify that the existing system was safe ExistSysAccSafe. Further, the ‘at least as
safe’ approach is only valid if the two systems (existing and new) are comparable (SimilarSys).
It is important to establish the criteria (SuffSimilarDefn) by which it shall be judged if the
new and existing systems are sufficiently similar.

SysAccSafe

{System X} is
acceptably safe

No explicit
acceptability criteria for

{System X} exist

NoAcceptCriteria

AtLeastAsSafeArg

At Least as Safe as
Existing System Argument

SysDesc
{System X} Definition

ExistSysDesc

{Existing System}
Definition

{Existing System}
Safety Record

ExistSysSafetyRec

SimilarEnv

{System X} is operating in a
sufficiently similar operating
context to {Existing System}

ExistSysAccSafe

{Existing System} was
acceptably safe

SimilarOpn

{System X} operating
behaviour sufficiently similar
to {Existing System}

SimilarSys

{System X} sufficiently
similar to {Existing System}
to merit comparison

SysMeetsExistTargets

{System X} meets or exceeds
safety targets requirements implied
by {Existing System} Safety
Record

Definition of
'sufficient' similarity

SuffSimilarDefn

Safety targets implied
by {Existing System}

Safety Record

ExistTargets

Figure 8 – At Least As Safe Argument

The main claim of the ‘at least as safe’ approach is SysMeetsExistTargets. It is necessary to
instantiate and support the claim that, based upon criteria implied by the existing system’s
safety record, the new (adaptive) system either meets or exceeds the safety of the existing
system. For this to work it must be possible to instantiate ExistTargets with reference to
requirements derived from the operational safety record of the existing system. These
requirements could be both quantitative (e.g. an acceptable rate of occurrence for a hazard)
or qualitative (e.g. the absence of a particular failure mode, or the presence of a hazard
mitigation behaviour). It is worth recognising that complete back-to-back verification of
the new system against the existing system is not necessarily required. Instead, this
argument requires (through instantiating ExistTargets) that we are able to ‘distil’ the
essential characteristics of the operational behaviour of the existing system to use as the
‘benchmark’ for evaluation of the new system.

 14

3.6 Risk Acceptance

As discussed in section 3.4, an argument of acceptable safety does not necessarily require
comparison with existing systems. Figure 9 shows the alternative approach of arguing
acceptable safety by reference to (externally) stated risk acceptance requirements.

AdaptALARP

Risks associated with the
operation of the {Adaptive
system} are As Low As
Reasonably Practicable

ALARPCrit

{ALARP Risk
Criteria}

RiskMetReq

Risks associated with the
operation of the {Adaptive system}
meet or exceed {explicitly stated
risk requirements}

ExpRiskReq

{Explicitly Stated
Risk Requirements}

AdaptRiskAcc

Risks associated with the operation
of the {Adaptive System} considered
acceptable in accordance with {risk
acceptance criteria}

inter pattern link

1 of 2

Figure 9 – Risk Acceptance Argument

Two alternatives claims are shown in Figure 9. The first (RiskMetReq) is that risks associated
with the adaptive system meet or exceed some explicitly stated risk requirements (e.g. an
overall level of tolerable risk, or an acceptable Hazard Risk Index). The second approach
(AdaptALARP) is potentially of more value for adaptive systems. This claims that the risks
associated with the operation of the system as ‘As Low As Reasonably Practicable’. As
discussed in the next section, the ALARP principle allows acknowledgement of the benefit
associated with the risks being posed, and the costs of risk reduction, to be included in the
discussion of risk acceptance.

3.7 As Low as Reasonably Practicable

If risks are introduced or increased by the introduction of an adaptive capability, it may be
necessary to argue that these risks are necessarily present, and acceptably controlled. The
argument pattern shown in Figure 10 provides a framework for arguing that identified risks
in a system have been sufficiently addressed in accordance with the ALARP principle. This
pattern could be used to support the AdaptALARP claim from the pattern described in the
previous section.

The ALARP principle divides risk into three categories. Firstly, there are intolerable risks that
cannot be justified on any grounds. At the other extreme, there are risks that are
sufficiently low to be considered negligible. Between these two extremes (in the ALARP
region) there are potentially tolerable risks. The tolerability of these risks depends on
whether they can be argued to be necessarily present and that they have been reduced to
the point that further risk reduction would cost an amount disproportionate to the
improvement gained.

 15

System hazards
addressed in

accordance with
ALARP Principle

No intolerable risks
present in system

All tolerable risks
have reduced as

low as reasonably
practicable

Risk associated
with all remaining

hazards is
negligible

Identified system
hazards

Definition of
'intolerable'

Definition of
'tolerable'

Definition of
'negligible'

System Hazard
Log

Risk associated
with {Hazard X}

has been
addressed

n = # hazards from
'Identified System

Hazards' (previously)
meeting definition of

intolerable

n>0 n=0

n

{Hazard X} has
been eliminated

and can no longer
occur

Risk associated
with {Hazard X}

has been reduced
to a tolerable level

Risk associated
with {Hazard X}

has been reduced
as low as

reasonably
practicable

m

m = # hazards from
'Identified System
Hazards' meeting

definition of
tolerable

{Hazard X} is
necessarily present
in system (because

of some positive
benefit)

Measures have
been taken to

reduce risk
associated with

{Hazard X}

Further reduction of
risk associated with
{Hazard X} requires

disproportionate
expense

Risk associated
with {Hazard X}

has been shown to
be negligible

o

o = # hazards from
'Identified System
Hazards' meeting

definition of
negligible

Provides
{Hazard X}

Definition of
'disproportionate'

G1

G2 G3

G4

G5

G6 G7 G8G9

G10 G11 G12

C1

C2
C3

C4

C5

Sn1

Figure 10 – ALARP (As Low as Reasonably Practicable) Argument

There are three strands to the safety argument: one tackling intolerable risks, one tackling
tolerable risk and one discounting negligible risks. To satisfactorily support the top level goal
(G1) it is important that these three strands (collectively) address all identified risks. The
definitions of tolerable, intolerable and negligible (C3, C2 and C4 respectively) should
therefore be so defined to cover and classify the range of possible levels of risks.

The ALARP principle relies on some understanding (C5) of when it is no longer cost-effective
to spend further money on risk reduction. The definitions of negligible (C4) and
disproportionate (C5) cannot be considered entirely independently. It would not make sense,
for example, to force risk reduction to a level below that identified elsewhere as negligible.

As the goal structure shows, if the means of addressing a previously identified intolerable
risk is to reduce it to a tolerable level, then the remaining risk must be tackled as for all
tolerable risks. If the level of risk has been reduced to a negligible level, then the hazard
must be tackled as a negligible risk.

 16

It is important that the source of Identified System Hazards (C1) identifies the level of risk
posed by a hazard in a way that permits sub-division into the classes of risk defined by C2, C3
and C4.

Ultimately, the ALARP pattern requires supporting arguments for the claims of elimination
(absence) of intolerable risks (G6), acceptably low occurrence of negligible risks (G9), and
the measures taken to reduce tolerable risks (G11).

3.8 Mapping High Level Hazard Control / Risk Reduction Claims to
the Safety Features of the Adaptive System

Working top-down through the arguments presented so far, a number of leaf goals remain
that are expressed in (general) terms of overall risk levels. For example, consider the
following leaf goals:

• (From the “Improved Safety” pattern) IncSafExt - Adaptive capability of system
provides an increased level of safety (reduces risk) in the {extended operating
region}

• (From both the “Improved Safety” and “Maintained Safety” patterns) NoNewExt -
No new / increased risks introduced in the {extended operating region of the
adaptive system}

• (From the “At Least As Safe” pattern) SysMeetsExistTargets – {System X} meets or
exceeds safety targets implied by {Existing System} Safety Record

• (From the “ALARP” pattern) G7 - Risk associated with {Hazard X} has been reduced
to a tolerable level.

As discussed in Section 2, process-assurance based arguments could possibly be used to
support these claims. However, given the specific (hazard and risk oriented) nature of these
claims, a general appeal to the integrity of the development and V&V processes would be far
from compelling. (Why should someone believe, for example, that no new / increased risks
have been introduced in the extended operating region of the adaptive systems simply
because the adaptive system has been developed to DO-178B Level A?) Instead, a product-
based approach suggests that these claims should be decomposed to claims and evidence
regarding the technical characteristics of the adaptive system in question.

For the positive argument of increased safety through adaptation (IncSafExt) we must
decompose this claim to the specific contributions of the adaptive software system to
hazard mitigation. This decomposition is shown in Figure 11.

To argue improved safety it is necessary to argue that there were risks previously present
with the conventional (non-adaptive) system that are now reduced through the introduced
adaptation capability (AdaptRedRisks). This risk reduction claim can be addressed though
arguing the acceptably implementation of hazard mitigation requirements (ArgOverPosReq),
with the requirements clearly referenced by PosRiskRedReq. As with any such mapping of
risks to requirements, it is necessary to argue that the requirements are valid (PosReqValid)
and traceable (ReqTraceable). Having established the requirement, it should be
acknowledged that there can be a hardware and software contribution to acceptably
addressing the requirements (e.g. a requirement on the reliability of the hardware platform
as well as on the behaviour of the software). This is shown in the decomposition of strategy

 17

ArgSWHWOtherPos. (The ‘other’ contribution mentioned in OtherContribPosAccept
acknowledges that other systems, including humans, can also contribute to the achievement
of a hazard mitigation requirement.)

Figure 11 - Top Level System-to-Software Hazard Mitigation Argument

Importantly, for the purpose of producing a product-oriented software safety argument, we
are left with the goal SWContribPosAccept. This goal states that adaptive software system
acceptably ‘plays its part’ in the implementation of hazard mitigation.

 18

3.8.1 Top Level System-to-Software Hazard Contribution

For the negative arguments that risks associated with the operation of the adaptive system
are acceptably low (e.g. NoNewExt) we must decompose these claims to point where
specific contributions of the adaptive software system to system level hazards can be argued
to be absent. Weaver’s [14] software safety argument presents such a decomposition, and
is shown in Figure 12.

SystemSafe

{System} is acceptably safe
to operate from a hazard
control perspective

SysDefn

System
Definition

DefnAccSafe

Definition of
acceptably safe

ReqValid

System Safety
Requirements are valid

HazAccept

All identified system level
hazards occur at acceptably
low rates

SysHaz

Identified System
Level Hazards

Traceability

Traceability of safety
requirements and safety
evidence has been shown

ArgSWHWOther
Argument across software,
hardware and other parts of
{System} that may cause
hazards

J

DependExplicit

System can be decomposed
as all dependencies between
different parts of the system
are explicit

HWContribAccept

Hardware contributions to
System Level Hazards are
acceptable

SWContribAccept

Software contributions to
System Level Hazards are
acceptable

OtherContribAccept

Other contributions to
System Level Hazards are
acceptable

SWContrib

Identified Software
Contributions to System
Level Hazards = Software
Hazardous Failure Modes

SWDefn

Software
Definition

HWDefn

Hardware
Definition

HWContrib
Identified Hardware
Contributions to
System Level
Hazards

OtherDefn

Other Components
Definition

OtherContrib

Identified Contributions
of Other Components to
System Level Hazards

Figure 12 - Top Level System-to-Software Hazard Contribution Argument (from [14])

This pattern follows a similar structure to the positive decomposition shown in Figure 11 –
the key difference being that we considering how hazards internal to the adaptive system
can arise (and arguing the acceptable non-occurrence of these conditions) rather than
addressing how hazards external to the adaptive system can be controlled.

Again, importantly, for the purpose of producing a product-oriented software safety
argument, we are left with the goal SWContribAccept. This goal states that the potential
contributions of the adaptive software system to system-level hazards are acceptably
controlled.

 19

To decompose the argument further it is necessary to consider the detail of how software
level contributions can be identified and caused by the software system. Such a
decomposition is shown by Weaver’s existing pattern Figure 13.

SWContribAccept

Software contributions to
System Level Hazards are
acceptable

ArgOverSWContrib
Argument over all
identified software
contributions to system
level hazards

SWContribIdent

All software contributions to
system level hazards have
been identified

SWContrib

Identified Software
Contributions to System
Level Hazards = Hazardous
Software Failure Modes

SWSRTraceability

Traceability of software
safety requirements and
safety evidence has been
shown

HSFMAccept

All causes of Hazardous
Software Failure Mode
{HSFM} are acceptable

n
n = # software hazardous

failure modes from SWContrib

SWDefn

Software
Definition

Figure 13 - Software Hazard Contributions Argument (from [14])

This pattern was originally developed for conventional software systems. Whilst it remains
valid for adaptive systems, it is important to recognise that for adaptive system,
satisfactorily arguing that all software contributions have been identified (SWContribIdent)
and developing the argument over all software contributions (ArgOverSWContrib) could be
particularly challenging. As already discussed, it is possible that with an adaptive system,
the functional behaviour may be only partially defined at the outset of development.
Behaviour could be learnt through a process of training. Any learnt behaviour must be
examined to identify whether, and how, it can contribute to system level hazards.

The identification of unsafe conditions of an adapting software system was a core concern of
the Safety Lifecycle for Artificial Neural Networks (SLANN) developed by Kurd [15]. This
lifecycle encapsulates several development and safety tasks involved in generating adaptive
control systems. At the initial phases of development the domain experts and safety
engineers may find it difficult to accurately define the desired function, and the degree to
which the adaptive control system can be allowed to adapt. The SLANN approach addresses
cases when there is potentially incomplete and incorrect functional specification at the
initial phases of development. Following an evolutionary style approach, the SLANN exploits
prior knowledge (in the form of rules that attempt to describe the desired function)
gathered from domain experts and ‘insertion’ algorithms [15] to generate a Safety-Critical
Artificial Neural Network (SCANN). Following an iterative approach, the SLANN further
develops the adaptive control system using learning processes. During the learning process
existing rules may be tuned and new rules self generated. An advantage of this approach is
that the development of the adaptive control system will take place by directly interacting
with the environment or problem in which it intends to operate (such as a simulation). This
direct interaction can help address potentially unrealistic assumptions the developers may
make. Safety assessment processes use rules that have been extracted from the SCANN and
analyses them to determine whether the approximated function exhibits any identified
failure modes.

 20

As with conventional software systems, it is possible to classify the types of hazardous
software failure mode that could arise from the Contributing Software Functionality (CSF).
Pumfrey’s classification [16] uses a service-based classification of failures. The classification
is refinement of the classifications by Ezhilchelvan and Shrivastava, and Bondavalli and
Simoncini. This service based approach identifies five different types of failures:

• Omission: The service is never delivered
• Commission: A service is delivered when not required
• Early: The service occurs earlier than intended
• Late: The service occurs later than intended
• Value: The output value has the wrong value

By defining the type of failure mode of concern, it is possible to focus the argument on the
particular causes and associated evidence for that type. This is shown in Figure 14.

HSFMOmissionAccept

All causes of Hazardous
Software Failure Mode {HSFM}
of type Omission are acceptable

HSFMEarlyAccept

All causes of Hazardous
Software Failure Mode
{HSFM} of type Early are
acceptable

HSFMValueAccept

All causes of Hazardous
Software Failure Mode {HSFM}
of type Value are acceptable

DefOmFM

Definition of
Omission Failure
Mode

DefEarlyFM

Definition of Early
Failure Mode

DefValueFM
Definition of
Value Failure
Mode

HSFMAccept

All causes of Hazardous
Software Failure Mode
{HSFM} are acceptable

1-of-5

HSFMCommissionAccept

All causes of Hazardous
Software Failure Mode {HSFM}
of type Commission are
acceptable

DefComFM

Definition of
Commission Failure
Mode

HSFMLateAccept

All causes of Hazardous
Software Failure Mode
{HSFM} of type Late are
acceptable

DefLateFM

Definition of Late
Failure Mode

HSFM
Hazardous
Software Failure
Mode

SysHaz

System Level
Hazard

SWDefn

Software
Definition

Figure 14 – Hazardous Software Failure Mode (HSFM) Classification Argument (from [14])

The classification of software failure modes can be useful for adaptive systems. Kurd in [15]
shows how HAZOPS (Hazard and Operability Study) guidewords can be interpreted when
applied to an Artificial Neural Network used for a function approximation problem. For
example, the guideword ‘NONE’ or ‘No’ is interpreted as follows:

Data value, ‘NO’: The ‘NO’ guide word was interpreted as ‘‘no output signal’’ or
output omission. This interpretation for the SCANN [Safety Critical Artificial
Neural Network] specifically became ‘‘no output data given an input vector’’.

 21

Kurd goes on to show in [15] how the specific features of the adaptation mechanism and
process of the SCANN can be used to argue the absence of this failure mode.

The final part of mapping the claims that a software failure mode is ‘acceptably’ addressed is
shown in Figure 15 (again, taken from Weaver’s existing pattern catalogue [14]).

HSFM{type}Accept

All causes of Hazardous
Software Failure Mode {HSFM}
of type {type} are acceptable

AbsHSFM{type}

Hazardous Software Failure
Mode {HSFM} of type {type}
absent in contributary software
functionality (CSF)

HandlHSFM{type}

Occurence of Hazardous
Software Failure Mode {HSFM} of
type {type} in contributary
software functionality (CSF)
acceptably detected and handled

ArgAbsHandl
Argument over {absence
and/or handling} of
Hazardous Software Failure
Mode

n-of-2

HSFM
Hazardous
Software Failure
Mode

ContribSWFunc

Identified Software
Functionality which
contributes to software
hazardous failure mode
{SHFM}

SWDefn

Software
Definition

Figure 15 – Hazardous Software Failure Mode Acceptability Argument (from [14])

In this argument the failure mode acceptability claim (HSFM{type}Accept) is addressed by
either arguing that the failure mode is absent from the adaptive software functionality
(AbsHSFM{type}), or by arguing that the failure mode is acceptably detected and handled by
some capability external to the adaptive software functionality (HandlHSFM{type}). (By the
n-of-2, rather than 1-of-2 choice) the pattern also admits a third option – the use of both
supporting arguments (i.e. that the failure mode is absent, but even if it were somehow
present it would be detected and handled).

In the domain of adaptive systems, the use of a detection and handling argument such as
HandlHSFM{type} relates to the potential use of external monitoring of, and back-up to, the
adaptive system (where the back-up could be a conventional system). One such example of
this is described in [17]. In this example the inputs into the adaptive control system are also
fed into the ‘monitor’. In addition, the output of the adaptive control system is also fed into
the ‘monitor’. The monitor then uses rules and algorithms to examine each input and
output whilst the adaptive control system is in operation (i.e. aircraft surface control). One
goal of the monitor is to identify output failures associated with the adaptive system (i.e. if
the output is too high or too low for the given inputs) before the control signal is sent to the
equipment under control. If no failure is detected then the output is not suppressed. If the
monitor detects a failure mode in the output then the monitor can ‘switch’ to alternative
conventional control software. This control software uses conventional control algorithms
and it is assumed that one exists for the operating context in which the adaptive system will
be used. The conventional control system is then used to ‘take-over’ from the adaptive

 22

system until the ‘monitor’ detects that the output of the adaptive control system no longer
results in an identified failure mode. In this example, the assurance level or Safety Integrity
Level [2] will be applicable to the monitor, the switch and the conventional control algorithm.
However, the adaptive control system can be of arbitrary assurance level [15]. This is
because the main thrust of the safety argument does not include claims about the adaptive
control system output since the ‘final’ output sent to the equipment under control will not
result in identified failure modes.

One advantage of the combination of monitoring and conventional control software is that
the approach can be applied for rapid prototypes. This can allow analysis and trials of
adaptive control systems (of differing paradigms) and they can be efficiently assessed for
performance. By involving monitoring approaches it can be less technically challenging to
derive proofs and mathematical arguments concerning the behaviour of the adaptive
control system and its capability. Another advantage is that existing standards and
guidelines can be used to develop such systems and is therefore more realistic to generate
safety argument that claims compliance with internal software and safety standards. As a
result, there is greater possibility of safety case acceptance of AI based adaptive control
systems.

It may not always be possible to provide an external monitor and back-up to the adaptive
system. In such cases, the responsibility rests with the failure mode absence argument put
forward by AbsHSFM{type}. The following section explores the possible arguments that can
be used to support this claim.

3.9 Hazardous Software Failure Mode Absence

Figure 16 shows the pattern of argument that can be used to support the claim that a
Hazardous Software Failure Mode is absent in the contributory software functionality of an
adaptive system. Firstly, we are concerned about being able to argue that an initial state of
the system cannot lead to the failure (InitialHSFM). Supporting this claim relies upon an
ability to know, interpret and analyse the ‘initial’ state of the adaptive system. (In the case
of Kurd’s Safety Critical Artificial Neural Network, this involved being able to perform rule
extraction to capture the rules implicit in the operating behaviour of the network.) It should
be recognised that this initial safe state may not be the initial development state of the
adaptive system. As described earlier, it can be desirable to develop adaptive systems in
domains where the initial behaviour of the system is only partially defined, and the
adaptation capability of the system is used to modify and add to this behaviour. Such an
initial development state may already be hazardous (e.g. the hazard of omission arising from
partially defined behaviour.)

Having argued the safety of the initial state of the CSF, it is then necessary to argue that
adaptation of that CSF cannot lead to the introduction of the failure mode (AdaptHSFM). To
argue this claim requires detailed knowledge of the adaptation mechanism for the CSF
(AdaptMech).

A distinction must be made when arguing the safety of any adaptation of the CSF as to
whether the adaptation is allowed in operation (on-line learning) or whilst the system is out
of operation (off-line learning). This is represented in the pattern as the choice between
OnLAdaptHSFM and OffLAdaptHSFM. The key distinction between online and offline
learning is that for off-line learning, we may be able argue that the behaviour that was
derived by learning is not unsafe, whilst with on-line learning we must argue that the
process of adaptation cannot introduce behaviour that is unsafe.

 23

OnLAdaptHSFM

{CSF} Adaptation in
operation (i.e. on-line)
cannot lead to {HSFM}

OffLAdaptHSFM

Off-line training and
adaptation results in {CSF}
that does not exhibit {HSFM}

InitialHSFM

Initial state of {CSF}
cannot lead to {HSFM}

AdaptHSFM

Adaptation of {CSF}
cannot lead to {HSFM}

(At least) 1 of 2

AdaptHSFMProc

Adaptation process does not
result in {CSF} that exhibits
{HSFM}

OffLAdaptHSFMCheck

{CSF} checked following
adapation process to ensure
that it that does not exhibit
{HSFM}

(At least) 1 of 2

AdaptMech

{Adaptation
Mechanism for CSF}

AbsHSFM{type}

Hazardous Software Failure
Mode {HSFM} of type {type}
absent in contributory software
functionality

Inter-Pattern Link

Figure 16 – Hazardous Software Failure Mode Absence Argument

For off-line learning the supporting goal OffLAdaptHSFMCheck suggests the possibility of
checking the state of the CSF following any learning episode (just as was suggested for the
initial state). The inability to check the adapted state of the CSF is a potential obstacle to
supporting this goal. For example, Cukic, in [18], observes that the functional properties of
an adaptive system cannot be inferred by a static analysis of the software; its functional
properties at any time can only be derived from knowledge of both the system software and
its dynamic state.

For an adaptive system employing on-line adaptation unsafe adaptations cannot be allowed
to take place (at least not without undermining AbsHSFM{type}). The following section
explores how it may be possible to argue the safety of the adaptation process (in support of
AdaptHSFMProc).

3.10 Safe Adaptation

There are two possible supporting arguments to address the claim that the adaptation
process cannot lead to the introduction of a hazardous failure mode (AdaptHSFMProc). The
first possible argument is that ‘hazardous’ adaptation stimuli (i.e. stimuli that could result in
the introduction of the hazardous failure mode) are not presented to the adaptation
mechanism. The principal difficulty in this argument lies in being able to determine the
‘hazardous’ set of stimuli (UnsafeStimuli). This problem is exacerbated where the time order

 24

of the presentation of stimuli is key to determining the nature of the adaptation. In such
cases, it is the sequence of stimuli that could give rise to the introduction of the failure mode
that must be determined. To identify ‘hazardous’ stimuli requires significant understanding
of the problem domain and of the behaviour of the adaptation mechanism. Although it is
easiest to imagine the ‘filtering’ of adaptation stimuli for adaptation that takes place off-line
(e.g. training set selection for a neural network), the goal OffLAdaptHSFMStim may also have
a role for on-line adaptation. In operation, it may remain necessary to argue the integrity
of any stimuli presented to the adaptation mechanism (e.g. if it is not able to ‘safely’ tolerate
noisy or ‘incorrect’ stimuli). It may be possible to support OffLAdaptHSFMStim through
masking of the stimuli allowed to be passed through to the adaptation mechanism. (This is
analogous to the ‘wrapper’ concept [19] when using Component-Off-The-Shelf components
known to malfunction when presented with certain inputs.)

OnLAdaptHSFMPrev

{CSF} Adaptation that would
lead to {HSFM} (i.e. unsafe
behaviour) being introduced is
prevented

OnLAdaptHSFMDet

{CSF} Adaptation that would
lead to {HSFM} (i.e. unsafe
behaviour) being introduced is
determinable

OnLAdaptHSFMDetAP

{CSF} Adaptation that would
lead to {HSFM} (i.e. unsafe
behaviour) being introduced is
determinable a priori

OnLAdaptHSFMDetOp

{CSF} Adaptation that would
lead to {HSFM} (i.e. unsafe
behaviour) being introduced is
determinable in operation

1 of 2

OnLAdaptHSFMPrevInh

Inherent constraints in {CSF}
Adaptation mechanism prevents
any adaptation that would lead to
{HSFM}

OffLAdaptHSFMStim

Adaptation stimuli will not
result in {CSF} that exhibits
{HSFM}

UnsafeStimuli
Adaptation stimuli
that would result in
{CSF} exhibiting
{HSFM}

AdaptHSFMProc

Adaptation process does not
result in {CSF} that exhibits
{HSFM}

inter-pattern link

(At least 1 of 2)

Figure 17 – Safe Adaptation Argument

The second approach to arguing the safety of the adaptation process is to argue that any
possible ‘unsafe’ adaptation is prevented by inherent constraints within the adaptation
mechanism (OnLAdaptHSFM). Kurd’s SCANN is an example of an adaptation mechanism
with in-built constraints [15]. The SCANN has a set of parameters which are used internally
by functions to produce input-output mappings. The approach is to derive parameter
constraints or safety constraints that control possible functions approximated by the SCANN.
These safety constraints are devised through suitable safety and development processes to
address identified failure modes associated with functional and non-functional properties. In
addition, learning algorithms are also constrained to provide assurance that safety
constraints are not violated.

 25

The disadvantage of employing internal safety constraints is that they are more technically
challenging to devise and enforce and are heavily dependant upon the adaptation
mechanism. In addition, this approach requires that safety constraints are determinable
(OnLAdaptHSFMDet) – i.e. that it is possible to determine when an unsafe adaptation is
being prompted as part of the adaptation process. This argument could be supported either
by claiming that static safety constraints are determinable prior to operation
(OnLAdaptHSFMDetAP) or by claiming that safety constraints are determinable in operation.
The latter of these two arguments is explored further in the next section.

3.11 Determining Unsafe Adaptations

The ability to determine unsafe adaptation in operation depends heavily upon the nature of
the adaptation (learning) taking place. Consider two (non mutually exclusive) classes of
adaptive system – model-building and behaviour-adapting. Model-building systems build a
model over time using information from their environment. One example of this is SLAM
(Simultaneous Localisation and Mapping), a process by which an autonomous vehicle can
build a map of an unknown environment whilst simultaneously keeping track of its position
on that map [20]. Whilst model-building systems acquire data over time, behavioural
adaptation systems attempt to extract explicit patterns or rules automatically from the data
acquired. An example of this is flight control system that modifies the way it uses its control
actuators based on the response (in terms of flight behaviour) it detects in response to its
previous use of the actuators. Such a system might, for example, might be able to continue
normal flight in the event of an unanticipated actuator failure. In particular, it might manage
to adapt to a failure mode that was not foreseen by the system designers.

For model-building systems, the behaviour of the system depends on the model it has
constructed. This model is potentially built during operation. It is therefore extremely
difficult to validate the model ahead of its use. As discussed in the previous section, it is
necessary to argue that the system will not build a model (i.e adapt) in such a way as to
introduce the potential for unsafe behaviour.

The argument shown in Figure 18 illustrates that the nature of the argument required to
support the claim that unsafe adaptations can be determined during operation
(OnLAdaptHSFMDetOp) is influenced by the nature of the adaptation taking place. For
behavioural adaptation systems the claim OnLBAdaptHSFMDetOp could be supported by
arguments of constraints enforced relative to the current system state, or even relative to
other adaptations that have taken place. For model-building systems determining an unsafe
model adaptation may be more difficult. Firstly, as shown in the pattern the model itself
cannot be considered to be unsafe. To argue the safety of the model, it is necessary to
consider the uses of the model (as shown by ArgOverUC and the context CSFUC). This
results in claims that it is possible to determine the features of the model that could lead to
HSFM being exhibited in the use of that model. In operation it is not possible to determine
these ‘unsafe’ model features through comparison with ‘ground truth’. The best arguments
that can be hoped for will depend on cross-check with other models available (and possibly
constructed) in operation and/or checks performed using additional domain knowledge of
the domain of the model (e.g. checking that a model constructed does not violate the laws
of physics.)

 26

OnLAdaptHSFMDetOp

{CSF} Adaptation that would
lead to {HSFM} (i.e. unsafe
behaviour) being introduced is
determinable in operation

inter-pattern link

OnLBAdaptHSFMDetOp

{CSF} Behavioural Adaptation that
would lead to {HSFM} (i.e. unsafe
behaviour) being introduced is
determinable in operation

OnLMBAdaptHSFMDetOp

{CSF} Model-Building Adaptation
that would lead to {HSFM} (i.e.
unsafe behaviour) being introduced
is determinable in operation

ArgOverUC

Argument over
model use-cases

CSFUC

{CSF} Uses of Learnt
Model (n of); Note - could
change if behavioural
adaptation also possible

HSFMModFeatDet

Features of learnt model critical to
the performance of {CSF Use Case}
that could lead to {HSFM} are
determinable in operation

n

(At least 1 of 2)

Figure 18 – Determining Unsafe Adaptations Argument

4. Summary

The novelty and perceived unpredictability of adaptive systems can make safety engineers
and regulators look sceptically upon their potential use in safety-critical applications. This
increases the need to establish compelling safety cases that assure their safe use in safety-
critical applications. This report has provided an overview of existing (software) safety
standards and has discussed the extent to which compliance with these standards will result
in a compelling case for safety for adaptive systems. This discussion established the need to
develop a product based approach to the justification of adaptive system safety. To
illustrate the key safety arguments that would be required by such an approach, this report
has presented a collection of the argument patterns – expressed using the Goal Structuring
Notation (GSN). These patterns, if used together, can help establish the principal arguments
of safety required for an adaptive system:

The following patterns have been presented in this report:

• Improved or Maintained Safety Argument

• Improved Safety Argument

• Maintained Safety Argument

• At Least As Safe Argument

 27

• Risk Acceptance Argument

• ALARP (As Low as Reasonably Practicable) Argument

• Top Level System-to-Software Hazard Mitigation Argument

• Top Level System-to-Software Hazard Contribution Argument

• Software Hazard Contributions Argument

• Hazardous Software Failure Mode (HSFM) Classification Argument

• Hazardous Software Failure Mode Acceptability Argument

• Hazardous Software Failure Mode Absence Argument

• Safe Adaptation Argument

• Behavioural vs. Model-Building Adaptation Argument

5. References

[1] R. Alexander, M. Hall-May, T. Kelly and J. McDermid, Safety Cases for Advanced

Control Software: Final Report, June 2007

[2] International Electrotechnical Commission (IEC), IEC61508 – Functional Safety of

Electrical / Electronic / Programmable Electronic Safety-Related Systems, 1999

[3] Radio Technical Commission for Aeronautics (RTCA), RTCA DO-178B/EUROCAE ED-

12B – Software Considerations in Airborne Systems and Equipment Certification,
1992

[4] UK Ministry of Defence, Defence Standard 00-56 – Safety Management

Requirements for Defence Systems, Issue 4, 2007

[5] W. Wu and T. P. Kelly, Towards Evidence-Based Architectural Design for Safety-

Critical Software Applications, in Architecting Dependable Systems IV, Lecture Notes
in Computer Science , Vol. 4615, Lemos, Rogério de; Gacek, Cristina; Romanovsky,
Alexander (Eds.), Springer, 2007

[6] B. Boehm, A Spiral Model of Software Development and Enhancement, IEEE

Computer, vol. 21, no. 5, May 1988, pp 61-72

[7] T. O. Jackson and J. McDermid, Certification of Neural Networks, ERA Technology Ltd,

Report 97-0365, Project 13-01-4745, 1997

[8] B. Littlewood and L. Strigini, Assessment of ultra-high dependability of software-

based systems, Communications of the ACM, vol. 36, no. 11, pp. 69–80, November
1993

[9] T. P. Kelly, A Systematic Approach to Safety Case Management, in CAE Methods for

Vehicle Crashworthiness and Occupant Safety, and Safety-Critical Systems,
Document Number 2004-01-1779, Society of Automotive Engineers, March 2004

[10] U.S. Department of Defense, MilStd 882E, “System Safety Program Requirements" /

"Standard Practice for System Safety" Draft 1, February 2006

 28

[11] I. Nabney, Validation of Neural Network Medical Systems, Workshop on Regulatory
Issues in Medical Decision Support, October 2001

[12] C. D. Locke, “Software Architecture for Hard Real-Time Applications: Cyclic

Executives vs. Fixed Priority Executives”, Real-Time Systems, vol. 4 no. 1, pp37-53,
1992

[13] T. P. Kelly, Arguing Safety – A Systematic Approach to Safety Case Management,

DPhil Thesis, YCST-99-05, Department of Computer Science, University of York, 1998

[14] R. A. Weaver, The Safety of Software – Constructing and Assuring Arguments, PhD

Thesis, YCST-2004-01, Department of Computer Science, University of York, 2004

[15] Z. Kurd, Artificial Neural Networks in Safety Critical Applications, PhD Thesis, YCST-

2006-09, Department of Computer Science, University of York, 2006

[16] D. J. Pumfrey, The Principled Design of Computer System Safety Analyses, DPhil

Thesis, Department of Computer Science, University of York

[17] A. Hauge and A. Tonnesen, Use of Artificial Neural Networks in Safety Critical

Systems, Faculty of Computer Sciences: Ostfold University College, 2004

[18] B. Cukic, The Need for Verification and Validation Techniques for Adaptive Control

System, in Proceedings of the Fifth International Symposium on Autonomous
Decentralized Systems (ISADS 2001), pp297–298. IEEE Computer Society, Dallas,
Texas, USA, March 2001

[19] J. Voas, Certifying Off-The-Shelf Software Components, IEEE Computer, vol. 31 no. 6,

pp53-59, 1998

[20] J. Leonard, H. Durrant-Whyte, Simultaneous map building and localization for an

autonomous mobile robot, in Proceedings of the IEEE International Workshop on
Intelligent Robots and Systems, pp1442-1447, 1991

	safety298.pdf
	REPORT DOCUMENTATION PAGE
	Form Approved OMB No. 0704-0188
	11. SPONSOR/MONITOR’S REPORT NUMBER(S)

